High-Performance Ideal Lattice-Based Cryptography on 8-Bit ATxmega Microcontrollers

نویسندگان

  • Thomas Pöppelmann
  • Tobias Oder
  • Tim Güneysu
چکیده

Over the last years lattice-based cryptography has received much attention due to versatile average-case problems like Ring-LWE or Ring-SIS that appear to be intractable by quantum computers. But despite of promising constructions, only few results have been published on implementation issues on very constrained platforms. In this work we therefore study and compare implementations of Ring-LWE encryption and the bimodal lattice signature scheme (BLISS) on an 8-bit Atmel ATxmega128 microcontroller. Since the number theoretic transform (NTT) is one of the core components in implementations of lattice-based cryptosystems, we review the application of the NTT in previous implementations and present an improved approach that significantly lowers the runtime for polynomial multiplication. Our implementation of Ring-LWE encryption takes 27 ms for encryption and 6.7 ms for decryption. To compute a BLISS signature, our software takes 329 ms and 88 ms for verification. These results outperform implementations on similar platforms and underline the feasibility of lattice-based cryptography on constrained devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation and Comparison of Lattice-based Identification Protocols on Smart Cards and Microcontrollers

Most lattice-based cryptographic schemes which enjoy a security proof suffer from huge key sizes and heavy computations. This is also true for the simpler case of identification protocols. Recent progress on ideal lattices has significantly improved the efficiency, and made it possible to implement practical lattice-based cryptography on constrained devices like FPGAs and smart phones. However,...

متن کامل

Hardware/Software Co-design of Elliptic Curve Cryptography on an 8051 Microcontroller

8-bit microcontrollers like the 8051 still hold a considerable share of the embedded systems market and dominate in the smart card industry. The performance of 8-bit microcontrollers is often too poor for the implementation of public-key cryptography in software. In this paper we present a minimalist hardware accelerator for enabling elliptic curve cryptography (ECC) on an 8051 microcontroller....

متن کامل

High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers

This paper presents new speed records for 128-bit secure elliptic-curve Diffie-Hellman key-exchange software on three different popular microcontroller architectures. We consider a 255-bit curve proposed by Bernstein known as Curve25519, which has also been adopted by the IETF. We optimize the X25519 key-exchange protocol proposed by Bernstein in 2006 for AVR ATmega 8-bit microcontrollers, MSP4...

متن کامل

Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs

Strong public-key cryptography is often considered to be too computationally expensive for small devices if not accelerated by cryptographic hardware. We revisited this statement and implemented elliptic curve point multiplication for 160-bit, 192-bit, and 224-bit NIST/SECG curves over GF(p) and RSA-1024 and RSA-2048 on two 8-bit microcontrollers. To accelerate multiple-precision multiplication...

متن کامل

The Simon and Speck Block Ciphers on AVR 8-Bit Microcontrollers

The last several years have witnessed a surge of activity in lightweight cryptographic design. Many lightweight block ciphers have been proposed, targeted mostly at hardware applications. Typically software performance has not been a priority, and consequently software performance for many of these algorithms is unexceptional. Simon and Speck are lightweight block cipher families developed by t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015